Since the VM system uses all available memory for disk caching, there are usually very few truly-free pages. The VM system depends on being able to properly choose pages which are not in use to reuse for new allocations. Selecting the optimal pages to free is possibly the single-most important function any VM system can perform because if it makes a poor selection, the VM system may be forced to unnecessarily retrieve pages from disk, seriously degrading system performance.
How much overhead are we willing to suffer in the critical path to avoid freeing the wrong page? Each wrong choice we make will cost us hundreds of thousands of CPU cycles and a noticeable stall of the affected processes, so we are willing to endure a significant amount of overhead in order to be sure that the right page is chosen. This is why FreeBSD tends to outperform other systems when memory resources become stressed.
The free page determination algorithm is built upon a history of the use of memory pages. To acquire this history, the system takes advantage of a page-used bit feature that most hardware page tables have.
In any case, the page-used bit is cleared and at some later point the VM system comes across the page again and sees that the page-used bit has been set. This indicates that the page is still being actively used. If the bit is still clear it is an indication that the page is not being actively used. By testing this bit periodically, a use history (in the form of a counter) for the physical page is developed. When the VM system later needs to free up some pages, checking this history becomes the cornerstone of determining the best candidate page to reuse.
FreeBSD makes use of several page queues to further refine the selection of pages to reuse as well as to determine when dirty pages must be flushed to their backing store. Since page tables are dynamic entities under FreeBSD, it costs virtually nothing to unmap a page from the address space of any processes using it. When a page candidate has been chosen based on the page-use counter, this is precisely what is done. The system must make a distinction between clean pages which can theoretically be freed up at any time, and dirty pages which must first be written to their backing store before being reusable. When a page candidate has been found it is moved to the inactive queue if it is dirty, or the cache queue if it is clean. A separate algorithm based on the dirty-to-clean page ratio determines when dirty pages in the inactive queue must be flushed to disk. Once this is accomplished, the flushed pages are moved from the inactive queue to the cache queue. At this point, pages in the cache queue can still be reactivated by a VM fault at relatively low cost. However, pages in the cache queue are considered to be “immediately freeable” and will be reused in an LRU (least-recently used) fashion when the system needs to allocate new memory.
It is important to note that the FreeBSD VM system attempts to separate clean and dirty pages for the express reason of avoiding unnecessary flushes of dirty pages (which eats I/O bandwidth), nor does it move pages between the various page queues gratuitously when the memory subsystem is not being stressed. This is why you will see some systems with very low cache queue counts and high active queue counts when doing a systat -vm command. As the VM system becomes more stressed, it makes a greater effort to maintain the various page queues at the levels determined to be the most effective. An urban myth has circulated for years that Linux did a better job avoiding swapouts than FreeBSD, but this in fact is not true. What was actually occurring was that FreeBSD was proactively paging out unused pages in order to make room for more disk cache while Linux was keeping unused pages in core and leaving less memory available for cache and process pages. I do not know whether this is still true today.
This, and other documents, can be downloaded from ftp://ftp.FreeBSD.org/pub/FreeBSD/doc/.
For questions about FreeBSD, read the documentation before contacting <questions@FreeBSD.org>.
For questions about this documentation, e-mail <doc@FreeBSD.org>.