FreeBSD provides an object-oriented mechanism for requesting resources from a parent bus. Almost all devices will be a child member of some sort of bus (PCI, ISA, USB, SCSI, etc) and these devices need to acquire resources from their parent bus (such as memory segments, interrupt lines, or DMA channels).
To do anything particularly useful with a PCI device you will need to obtain the Base Address Registers (BARs) from the
PCI Configuration space. The PCI-specific details of obtaining the BAR are abstracted in
the bus_alloc_resource()
function.
For example, a typical driver might have something similar to this in the attach()
function:
sc->bar0id = PCIR_BAR(0); sc->bar0res = bus_alloc_resource(dev, SYS_RES_MEMORY, &sc->bar0id, 0, ~0, 1, RF_ACTIVE); if (sc->bar0res == NULL) { printf("Memory allocation of PCI base register 0 failed!\n"); error = ENXIO; goto fail1; } sc->bar1id = PCIR_BAR(1); sc->bar1res = bus_alloc_resource(dev, SYS_RES_MEMORY, &sc->bar1id, 0, ~0, 1, RF_ACTIVE); if (sc->bar1res == NULL) { printf("Memory allocation of PCI base register 1 failed!\n"); error = ENXIO; goto fail2; } sc->bar0_bt = rman_get_bustag(sc->bar0res); sc->bar0_bh = rman_get_bushandle(sc->bar0res); sc->bar1_bt = rman_get_bustag(sc->bar1res); sc->bar1_bh = rman_get_bushandle(sc->bar1res);
Handles for each base address register are kept in the softc
structure so that they can be used to write to the device
later.
These handles can then be used to read or write from the device registers with the
bus_space_*
functions. For example, a driver might contain
a shorthand function to read from a board specific register like this:
uint16_t board_read(struct ni_softc *sc, uint16_t address) { return bus_space_read_2(sc->bar1_bt, sc->bar1_bh, address); }
Similarly, one could write to the registers with:
void board_write(struct ni_softc *sc, uint16_t address, uint16_t value) { bus_space_write_2(sc->bar1_bt, sc->bar1_bh, address, value); }
These functions exist in 8bit, 16bit, and 32bit versions and you should use bus_space_{read|write}_{1|2|4}
accordingly.
Note: In FreeBSD 7.0 and later, you can use the
bus_*
functions instead ofbus_space_*
. Thebus_*
functions take a struct resource * pointer instead of a bus tag and handle. Thus, you could drop the bus tag and bus handle members from thesoftc
and rewrite theboard_read()
function as:uint16_t board_read(struct ni_softc *sc, uint16_t address) { return (bus_read(sc->bar1res, address)); }
Interrupts are allocated from the object-oriented bus code in a way similar to the memory resources. First an IRQ resource must be allocated from the parent bus, and then the interrupt handler must be set up to deal with this IRQ.
Again, a sample from a device attach()
function says
more than words.
/* Get the IRQ resource */ sc->irqid = 0x0; sc->irqres = bus_alloc_resource(dev, SYS_RES_IRQ, &(sc->irqid), 0, ~0, 1, RF_SHAREABLE | RF_ACTIVE); if (sc->irqres == NULL) { printf("IRQ allocation failed!\n"); error = ENXIO; goto fail3; } /* Now we should set up the interrupt handler */ error = bus_setup_intr(dev, sc->irqres, INTR_TYPE_MISC, my_handler, sc, &(sc->handler)); if (error) { printf("Couldn't set up irq\n"); goto fail4; }
Some care must be taken in the detach routine of the driver. You must quiesce the
device's interrupt stream, and remove the interrupt handler. Once bus_teardown_intr()
has returned, you know that your interrupt
handler will no longer be called and that all threads that might have been executing this
interrupt handler have returned. Since this function can sleep, you must not hold any
mutexes when calling this function.
This section is obsolete, and present only for historical reasons. The proper methods
for dealing with these issues is to use the bus_space_dma*()
functions instead. This paragraph can be removed
when this section is updated to reflect that usage. However, at the moment, the API is in
a bit of flux, so once that settles down, it would be good to update this section to
reflect that.
On the PC, peripherals that want to do bus-mastering DMA must deal with physical
addresses. This is a problem since FreeBSD uses virtual memory and deals almost
exclusively with virtual addresses. Fortunately, there is a function, vtophys()
to help.
#include <vm/vm.h> #include <vm/pmap.h> #define vtophys(virtual_address) (...)
The solution is a bit different on the alpha however, and what we really want is a
function called vtobus()
.
#if defined(__alpha__) #define vtobus(va) alpha_XXX_dmamap((vm_offset_t)va) #else #define vtobus(va) vtophys(va) #endif
It is very important to deallocate all of the resources that were allocated during
attach()
. Care must be taken to deallocate the correct
stuff even on a failure condition so that the system will remain usable while your driver
dies.
This, and other documents, can be downloaded from ftp://ftp.FreeBSD.org/pub/FreeBSD/doc/.
For questions about FreeBSD, read the documentation before contacting <questions@FreeBSD.org>.
For questions about this documentation, e-mail <doc@FreeBSD.org>.