Kerberos is a network add-on system/protocol that allows users to authenticate themselves through the services of a secure server. Services such as remote login, remote copy, secure inter-system file copying and other high-risk tasks are made considerably safer and more controllable.
The following instructions can be used as a guide on how to set up Kerberos as distributed for FreeBSD. However, you should refer to the relevant manual pages for a complete description.
Kerberos is an optional component of FreeBSD. The easiest way to install this software is by selecting the krb4 or krb5 distribution in sysinstall during the initial installation of FreeBSD. This will install the “eBones” (KerberosIV) or “Heimdal” (Kerberos5) implementation of Kerberos. These implementations are included because they are developed outside the USA/Canada and were thus available to system owners outside those countries during the era of restrictive export controls on cryptographic code from the USA.
Alternatively, the MIT implementation of Kerberos is available from the Ports Collection as security/krb5.
This is done on the Kerberos server only. First make sure that you do not have any old Kerberos databases around. You should change to the directory /etc/kerberosIV and check that only the following files are present:
# cd /etc/kerberosIV # ls README krb.conf krb.realms
If any additional files (such as principal.* or master_key) exist, then use the kdb_destroy command to destroy the old Kerberos database, or if Kerberos is not running, simply delete the extra files.
You should now edit the krb.conf and krb.realms files to define your Kerberos realm. In this case the realm will be EXAMPLE.COM and the server is grunt.example.com. We edit or create the krb.conf file:
# cat krb.conf EXAMPLE.COM EXAMPLE.COM grunt.example.com admin server CS.BERKELEY.EDU okeeffe.berkeley.edu ATHENA.MIT.EDU kerberos.mit.edu ATHENA.MIT.EDU kerberos-1.mit.edu ATHENA.MIT.EDU kerberos-2.mit.edu ATHENA.MIT.EDU kerberos-3.mit.edu LCS.MIT.EDU kerberos.lcs.mit.edu TELECOM.MIT.EDU bitsy.mit.edu ARC.NASA.GOV trident.arc.nasa.gov
In this case, the other realms do not need to be there. They are here as an example of how a machine may be made aware of multiple realms. You may wish to not include them for simplicity.
The first line names the realm in which this system works. The other lines contain realm/host entries. The first item on a line is a realm, and the second is a host in that realm that is acting as a “key distribution center”. The words admin server following a host's name means that host also provides an administrative database server. For further explanation of these terms, please consult the Kerberos manual pages.
Now we have to add grunt.example.com to the EXAMPLE.COM realm and also add an entry to put all hosts in the .example.com domain in the EXAMPLE.COM realm. The krb.realms file would be updated as follows:
# cat krb.realms grunt.example.com EXAMPLE.COM .example.com EXAMPLE.COM .berkeley.edu CS.BERKELEY.EDU .MIT.EDU ATHENA.MIT.EDU .mit.edu ATHENA.MIT.EDU
Again, the other realms do not need to be there. They are here as an example of how a machine may be made aware of multiple realms. You may wish to remove them to simplify things.
The first line puts the specific system into the named realm. The rest of the lines show how to default systems of a particular subdomain to a named realm.
Now we are ready to create the database. This only needs to run on the Kerberos server (or Key Distribution Center). Issue the kdb_init command to do this:
# kdb_init Realm name [default ATHENA.MIT.EDU ]: EXAMPLE.COM You will be prompted for the database Master Password. It is important that you NOT FORGET this password. Enter Kerberos master key:
Now we have to save the key so that servers on the local machine can pick it up. Use the kstash command to do this:
# kstash Enter Kerberos master key: Current Kerberos master key version is 1. Master key entered. BEWARE!
This saves the encrypted master password in /etc/kerberosIV/master_key.
Two principals need to be added to the database for each system that will be secured with Kerberos. Their names are kpasswd and rcmd. These two principals are made for each system, with the instance being the name of the individual system.
These daemons, kpasswd and rcmd allow other systems to change Kerberos passwords and run commands like rcp(1), rlogin(1) and rsh(1).
Now let us add these entries:
# kdb_edit Opening database... Enter Kerberos master key: Current Kerberos master key version is 1. Master key entered. BEWARE! Previous or default values are in [brackets] , enter return to leave the same, or new value. Principal name: passwd Instance: grunt <Not found>, Create [y] ? y Principal: passwd, Instance: grunt, kdc_key_ver: 1 New Password: <---- enter RANDOM here Verifying password New Password: <---- enter RANDOM here Random password [y] ? y Principal's new key version = 1 Expiration date (enter yyyy-mm-dd) [ 2000-01-01 ] ? Max ticket lifetime (*5 minutes) [ 255 ] ? Attributes [ 0 ] ? Edit O.K. Principal name: rcmd Instance: grunt <Not found>, Create [y] ? Principal: rcmd, Instance: grunt, kdc_key_ver: 1 New Password: <---- enter RANDOM here Verifying password New Password: <---- enter RANDOM here Random password [y] ? Principal's new key version = 1 Expiration date (enter yyyy-mm-dd) [ 2000-01-01 ] ? Max ticket lifetime (*5 minutes) [ 255 ] ? Attributes [ 0 ] ? Edit O.K. Principal name: <---- null entry here will cause an exit
We now have to extract all the instances which define the services on each machine. For this we use the ext_srvtab command. This will create a file which must be copied or moved by secure means to each Kerberos client's /etc directory. This file must be present on each server and client, and is crucial to the operation of Kerberos.
# ext_srvtab grunt Enter Kerberos master key: Current Kerberos master key version is 1. Master key entered. BEWARE! Generating 'grunt-new-srvtab'....
Now, this command only generates a temporary file which must be renamed to srvtab so that all the servers can pick it up. Use the mv(1) command to move it into place on the original system:
# mv grunt-new-srvtab srvtab
If the file is for a client system, and the network is not deemed safe, then copy the client-new-srvtab to removable media and transport it by secure physical means. Be sure to rename it to srvtab in the client's /etc directory, and make sure it is mode 600:
# mv grumble-new-srvtab srvtab # chmod 600 srvtab
We now have to add some user entries into the database. First let us create an entry for the user jane. Use the kdb_edit command to do this:
# kdb_edit Opening database... Enter Kerberos master key: Current Kerberos master key version is 1. Master key entered. BEWARE! Previous or default values are in [brackets] , enter return to leave the same, or new value. Principal name: jane Instance: <Not found>, Create [y] ? y Principal: jane, Instance: , kdc_key_ver: 1 New Password: <---- enter a secure password here Verifying password New Password: <---- re-enter the password here Principal's new key version = 1 Expiration date (enter yyyy-mm-dd) [ 2000-01-01 ] ? Max ticket lifetime (*5 minutes) [ 255 ] ? Attributes [ 0 ] ? Edit O.K. Principal name: <---- null entry here will cause an exit
First we have to start the Kerberos daemons. Note that if you have correctly edited your /etc/rc.conf then this will happen automatically when you reboot. This is only necessary on the Kerberos server. Kerberos clients will automatically get what they need from the /etc/kerberosIV directory.
# kerberos & Kerberos server starting Sleep forever on error Log file is /var/log/kerberos.log Current Kerberos master key version is 1. Master key entered. BEWARE! Current Kerberos master key version is 1 Local realm: EXAMPLE.COM # kadmind -n & KADM Server KADM0.0A initializing Please do not use 'kill -9' to kill this job, use a regular kill instead Current Kerberos master key version is 1. Master key entered. BEWARE!
Now we can try using the kinit command to get a ticket for the ID jane that we created above:
% kinit jane MIT Project Athena (grunt.example.com) Kerberos Initialization for "jane" Password:
Try listing the tokens using klist to see if we really have them:
% klist Ticket file: /tmp/tkt245 Principal: jane@EXAMPLE.COM Issued Expires Principal Apr 30 11:23:22 Apr 30 19:23:22 krbtgt.EXAMPLE.COM@EXAMPLE.COM
Now try changing the password using passwd(1) to check if the kpasswd daemon can get authorization to the Kerberos database:
% passwd realm EXAMPLE.COM Old password for jane: New Password for jane: Verifying password New Password for jane: Password changed.
Kerberos allows us to give each user who needs root privileges their own separate su(1) password. We could now add an ID which is authorized to su(1) to root. This is controlled by having an instance of root associated with a principal. Using kdb_edit we can create the entry jane.root in the Kerberos database:
# kdb_edit Opening database... Enter Kerberos master key: Current Kerberos master key version is 1. Master key entered. BEWARE! Previous or default values are in [brackets] , enter return to leave the same, or new value. Principal name: jane Instance: root <Not found>, Create [y] ? y Principal: jane, Instance: root, kdc_key_ver: 1 New Password: <---- enter a SECURE password here Verifying password New Password: <---- re-enter the password here Principal's new key version = 1 Expiration date (enter yyyy-mm-dd) [ 2000-01-01 ] ? Max ticket lifetime (*5 minutes) [ 255 ] ? 12 <--- Keep this short! Attributes [ 0 ] ? Edit O.K. Principal name: <---- null entry here will cause an exit
Now try getting tokens for it to make sure it works:
# kinit jane.root MIT Project Athena (grunt.example.com) Kerberos Initialization for "jane.root" Password:
Now we need to add the user to root's .klogin file:
# cat /root/.klogin jane.root@EXAMPLE.COM
Now try doing the su(1):
% su Password:
and take a look at what tokens we have:
# klist Ticket file: /tmp/tkt_root_245 Principal: jane.root@EXAMPLE.COM Issued Expires Principal May 2 20:43:12 May 3 04:43:12 krbtgt.EXAMPLE.COM@EXAMPLE.COM
In an earlier example, we created a principal called jane with an instance root. This was based on a user with the same name as the principal, and this is a Kerberos default; that a <principal>.<instance> of the form <username>.root will allow that <username> to su(1) to root if the necessary entries are in the .klogin file in root's home directory:
# cat /root/.klogin jane.root@EXAMPLE.COM
Likewise, if a user has in their own home directory lines of the form:
% cat ~/.klogin jane@EXAMPLE.COM jack@EXAMPLE.COM
This allows anyone in the EXAMPLE.COM realm who has authenticated themselves as jane or jack (via kinit, see above) to access to jane's account or files on this system (grunt) via rlogin(1), rsh(1) or rcp(1).
For example, jane now logs into another system using Kerberos:
% kinit MIT Project Athena (grunt.example.com) Password: % rlogin grunt Last login: Mon May 1 21:14:47 from grumble Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994 The Regents of the University of California. All rights reserved. FreeBSD BUILT-19950429 (GR386) #0: Sat Apr 29 17:50:09 SAT 1995
Or jack logs into jane's account on the same machine (jane having set up the .klogin file as above, and the person in charge of Kerberos having set up principal jack with a null instance):
% kinit % rlogin grunt -l jane MIT Project Athena (grunt.example.com) Password: Last login: Mon May 1 21:16:55 from grumble Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994 The Regents of the University of California. All rights reserved. FreeBSD BUILT-19950429 (GR386) #0: Sat Apr 29 17:50:09 SAT 1995
This, and other documents, can be downloaded from ftp://ftp.FreeBSD.org/pub/FreeBSD/doc/.
For questions about FreeBSD, read the documentation before contacting <questions@FreeBSD.org>.
For questions about this documentation, e-mail <doc@FreeBSD.org>.