Het Z File System, ontwikkeld door Sun™, is een nieuwe technologie ontwikkeld om gebruik te maken van een pool-gebaseerde opslagmethode. Dit houdt in dat ruimte pas wordt gebruikt wanneer het nodig is voor dataopslag. Verder is het ontworpen voor maximale integriteit van gegevens, ondersteuning van gegevens-snapshots, meerdere kopieën, en gegevenschecksums. Ook is een nieuw gegevensreplicatiemodel, bekend als RAID-Z, toegevoegd; RAID-Z lijkt op RAID5, maar is ontworpen om corruptie tijdens het schrijven van gegevens te voorkomen.
Het ZFS subsysteem maakt gebruik van veel systeembronnen waardoor het nodig kan zijn een en ander af te stellen, zodat voor het dagelijks gebruik maximale efficiëntie wordt behaald. Doordat het een experimentele eigenschap van FreeBSD is, kan dit in de nabije toekomst veranderen; op dit moment echter, worden de volgende stappen aangeraden.
De totale hoeveelheid systeemgeheugen dient minstens één gigabyte te zijn, maar twee gigabytes of meer wordt aanbevolen. In alle voorbeelden hier heeft het systeem één gigabyte geheugen, met verschillende andere afstelmechanismen in werking.
Sommigen hebben succes gehad met minder dan een gigabyte geheugen, maar met een dergelijke, beperkte hoeveelheid geheugen is de kans groot dat onder zware belasting een kernelpanic in FreeBSD op zal treden door uitputting van het geheugen.
Het wordt aangeraden om ongebruikte stuurprogramma's en opties te verwijderen uit het kernelconfiguratiebestand. Omdat de meeste stuurprogramma's beschikbaar zijn als modules kunnen ze alsnog worden geladen door middel van het bestand /boot/loader.conf.
Gebruikers van de i386™-architectuur dienen de volgende optie aan hun kernelconfiguratiebestand toe te voegen, de kernel opnieuw te compileren, en opnieuw op te starten:
options KVA_PAGES=512
Deze optie vergroot de kerneladresruimte, waarmee het mogelijk wordt gemaakt om de
vm.kvm_size
afstelling hoger dan de huidige limiet van
1 GB (2 GB voor PAE) in te stellen.
Deel, om de meest geschikte waarde voor deze optie te vinden, de gewenste hoeveelheid
adresruimte door vier (4). In dit geval is dat 512 voor
2 GB.
De kmem adresruimte dient te worden vergroot op alle FreeBSD architecturen. Op het testsysteem met één gigabyte fysiek geheugen werd succes behaald met de volgende opties, die in het bestand /boot/loader.conf geplaatst dienen te worden, waarna het systeem opnieuw moet worden opgestart:
vm.kmem_size="330M" vm.kmem_size_max="330M" vfs.zfs.arc_max="40M" vfs.zfs.vdev.cache.size="5M"
Zie voor een meer gedetailleerde lijst van aanbevelingen aangaande ZFS-afstelling: http://wiki.freebsd.org/ZFSTuningGuide .
Er is een opstartmechanisme dat FreeBSD in staat stelt om ZFS pools te mounten tijdens initialisatie van het systeem. Voer de volgende commando's uit om dit in te stellen:
# echo 'zfs_enable="YES"' >> /etc/rc.conf # /etc/rc.d/zfs start
In het resterende deel van dit document wordt aangenomen dat er drie SCSI-schijven beschikbaar zijn, en dat hun apparaatnamen respectievelijk da0, da1 en da2 zijn. Gebruikers van IDE-hardware kunnen de ad apparaten gebruiken in plaats van SCSI-apparaten.
Voer het commando zpool uit om een simpele, niet-redundante ZFS-pool op een enkele schijf aan te maken:
# zpool create example /dev/da0
Bestudeer de uitvoer van het commando df om de nieuwe pool te zien:
# df Filesystem 1K-blocks Used Avail Capacity Mounted on /dev/ad0s1a 2026030 235230 1628718 13% / devfs 1 1 0 100% /dev /dev/ad0s1d 54098308 1032846 48737598 2% /usr example 17547136 0 17547136 0% /example
In deze uitvoer wordt duidelijk dat de example-pool niet alleen is aangemaakt, maar ook direct gemount is. Hij is ook toegankelijk, net als een gewoon bestandssysteem; er kunnen bestanden op worden aangemaakt en gebruikers kunnen er op rondkijken zoals in het volgende voorbeeld:
# cd /example # ls # touch testfile # ls -al total 4 drwxr-xr-x 2 root wheel 3 Aug 29 23:15 . drwxr-xr-x 21 root wheel 512 Aug 29 23:12 .. -rw-r--r-- 1 root wheel 0 Aug 29 23:15 testfile
Helaas benut deze pool nog geen ZFS-mogelijkheden. Maak een bestandssysteem aan op deze pool en activeer er compressie op:
# zfs create example/compressed # zfs set compression=gzip example/compressed
example/compressed is nu een gecomprimeerd ZFS-bestandssysteem. Probeer er een paar grote bestanden naartoe te kopiëren door ze naar /example/compressed te kopiëren.
De compressie kan nu worden uitgeschakeld met:
# zfs set compression=off example/compressed
Voer het volgende commando uit om het bestandssysteem te unmounten, en controleer dat daarna met df:
# zfs umount example/compressed # df Filesystem 1K-blocks Used Avail Capacity Mounted on /dev/ad0s1a 2026030 235232 1628716 13% / devfs 1 1 0 100% /dev /dev/ad0s1d 54098308 1032864 48737580 2% /usr example 17547008 0 17547008 0% /example
Mount het bestandssysteem opnieuw om het weer toegankelijk te maken en controleer met df:
# zfs mount example/compressed # df Filesystem 1K-blocks Used Avail Capacity Mounted on /dev/ad0s1a 2026030 235234 1628714 13% / devfs 1 1 0 100% /dev /dev/ad0s1d 54098308 1032864 48737580 2% /usr example 17547008 0 17547008 0% /example example/compressed 17547008 0 17547008 0% /example/compressed
De pool en het bestandssysteem zijn ook zichtbaar in de uitvoer van mount:
# mount /dev/ad0s1a on / (ufs, local) devfs on /dev (devfs, local) /dev/ad0s1d on /usr (ufs, local, soft-updates) example on /example (zfs, local) example/data on /example/data (zfs, local) example/compressed on /example/compressed (zfs, local)
Zoals is te zien kunnen ZFS-bestandssystemen, nadat ze zijn gecreëerd, net als gewone bestandssystemen worden gebruikt; er zijn echter ook vele andere mogelijkheden beschikbaar. In het volgende voorbeeld wordt er een nieuw bestandssysteem data gecreëerd. Er zullen belangrijke bestanden op worden bewaard, dus het bestandssysteem wordt zodanig ingesteld dat het twee kopieën van ieder gegevensblok opslaat:
# zfs create example/data # zfs set copies=2 example/data
Het is nu mogelijk om het gegevens- en ruimtegebruik te bekijken door df opnieuw te draaien:
# df Filesystem 1K-blocks Used Avail Capacity Mounted on /dev/ad0s1a 2026030 235234 1628714 13% / devfs 1 1 0 100% /dev /dev/ad0s1d 54098308 1032864 48737580 2% /usr example 17547008 0 17547008 0% /example example/compressed 17547008 0 17547008 0% /example/compressed example/data 17547008 0 17547008 0% /example/data
Merk op dat ieder bestandssysteem in de pool dezelfde hoeveelheid vrije ruimte heeft. Dit is de reden dat df steeds wordt gebruikt tussen de voorbeelden door, om te laten zien dat de bestandssystemen slechts zoveel ruimte gebruiken als ze nodig hebben en allemaal putten uit dezelfde pool. Het ZFS bestandssysteem elimineert concepten als volumes en partities, en staat verschillende bestandssystemen toe om in dezelfde pool te bestaan. Verwijder nu de bestandssystemen en verwijder daarna de pool, omdat deze niet meer nodig zijn:
# zfs destroy example/compressed # zfs destroy example/data # zpool destroy example
Schijven gaan slechter werken en begeven het, een onvermijdelijke eigenschap. Wanneer de schijf stukgaat zullen de gegevens verloren gaan. Een methode om gegevensverlies ten gevolge van een kapotte harde schijf te vermijden is het implementeren van RAID. ZFS ondersteunt deze mogelijkheid in zijn pool-ontwerp en wordt beschreven in de volgende sectie.
Zoals eerder opgemerkt wordt in deze sectie aangenomen dat er drie SCSI-schijven bestaan als de apparaten da0, da1 en da2 (of ad0 en hoger als IDE-schijven worden gebruikt). Voer het volgende commando uit om een RAID-Z-pool te creëren:
# zpool create storage raidz da0 da1 da2
Opmerking: Sun raadt aan om tussen de drie en negen schijven te gebruiken voor een RAID-Z-configuratie. Overweeg, als u een enkele pool met 10 of meer schijven nodig heeft, om deze te splitsen in kleine RAID-Z-groepen. Overweeg, als u slechts twee schijven heeft en nog steeds redundantie nodig heeft, om in plaats hiervan een ZFS-spiegel te gebruiken. Bekijk de handleidingpagina zpool(8) voor meer details.
De storage zpool zou gecreëerd moeten zijn. Dit kan worden geverifieerd met de mount(8) en df(1) commando's zoals eerder. Er kunnen meer schijfapparaten worden toegewezen door ze aan het einde van de bovenstaande lijst toe te voegen. Maak een nieuw bestandssysteem in de pool, genaamd home waar op den duur de gebruikersbestanden geplaatst zullen worden:
# zfs create storage/home
Het is nu mogelijk om compressie in te schakelen en extra kopieën te bewaren van de gebruikersmappen en -bestanden. Dit kan net als eerder worden bewerkstelligd door de volgende commando's uit te voeren:
# zfs set copies=2 storage/home # zfs set compression=gzip storage/home
Kopieer, om dit als de nieuwe home-map voor gebruikers in te stellen, de gebruikersgegevens naar deze map en creëer de benodigde links:
# cp -rp /home/* /storage/home # rm -rf /home /usr/home # ln -s /storage/home /home # ln -s /storage/home /usr/home
De gebruikersgegevens zouden nu op het nieuw aangemaakte /storage/home bestandssysteem moeten staan. Test dit door een nieuwe gebruiker aan te maken en daarmee in te loggen.
Probeer een snapshot te maken dat later weer hersteld kan worden:
# zfs snapshot storage/home@08-30-08
Merk op dat de snapshot-optie alleen een echt bestandssysteem vastlegt, geen mappen of bestanden. Het @-karakter wordt gebruikt als scheidingsteken tussen de naam van het bestandssysteem of de naam van het volume. Wanneer de home-map van een gebruiker wordt weggegooid, kan deze worden hersteld met:
# zfs rollback storage/home@08-30-08
Voer ls in de .zfs/snapshot directory van het bestandssysteem uit om een lijst van alle beschikbare snapshots te krijgen. Voer, om bijvoorbeeld het zojuist gemaakte snapshot te zien, het volgende commando uit:
# ls /storage/home/.zfs/snapshot
Het is mogelijk om een script te schrijven dat maandelijks een snapshot van de gebruikersgegevens maakt; na verloop van tijd kunnen snapshots echter een grote hoeveelheid schrijfruimte in beslag nemen. Het vorige snapshot kan worden verwijderd met het volgende commando:
# zfs destroy storage/home@08-30-08
Na al dit testen is er geen reden om /storage/home in zijn huidige staat nog te bewaren. Maak er het echte /home bestandssysteem van:
# zfs set mountpoint=/home storage/home
Het uitvoeren van de commando's df en mount laat zien dat het systeem ons bestandssysteem nu als de echte /home behandelt:
# mount /dev/ad0s1a on / (ufs, local) devfs on /dev (devfs, local) /dev/ad0s1d on /usr (ufs, local, soft-updates) storage on /storage (zfs, local) storage/home on /home (zfs, local) # df Filesystem 1K-blocks Used Avail Capacity Mounted on /dev/ad0s1a 2026030 235240 1628708 13% / devfs 1 1 0 100% /dev /dev/ad0s1d 54098308 1032826 48737618 2% /usr storage 26320512 0 26320512 0% /storage storage/home 26320512 0 26320512 0% /home
Hiermee is de RAID-Z configuratie compleet. Voer het volgende commando uit om status-updates van de gecreëerde bestandssystemen te krijgen tijdens het draaien van de nachtelijke periodic(8):
# echo 'daily_status_zfs_enable="YES"' >> /etc/periodic.conf
Iedere software-RAID heeft een methode om zijn status te inspecteren. ZFS is geen uitzondering. De status van RAID-Z-apparaten kan worden geïnspecteerd met het volgende commando:
# zpool status -x
Als alle pools in orde zijn en alles is normaal, dan wordt het volgende bericht weergegeven:
all pools are healthy
Als er een probleem is, misschien een schijf die offine is gegaan, dan wordt de status van de pool weergegeven en dat zal er als volgt uitzien:
pool: storage state: DEGRADED status: One or more devices has been taken offline by the administrator. Sufficient replicas exist for the pool to continue functioning in a degraded state. action: Online the device using 'zpool online' or replace the device with 'zpool replace'. scrub: none requested config: NAME STATE READ WRITE CKSUM storage DEGRADED 0 0 0 raidz1 DEGRADED 0 0 0 da0 ONLINE 0 0 0 da1 OFFLINE 0 0 0 da2 ONLINE 0 0 0 errors: No known data errors
Hier staat dat het apparaat offline is gezet door de beheerder. Dat is waar voor dit specifieke voorbeeld. Om de schijf offline te zetten werd het volgende commando gebruikt:
# zpool offline storage da1
Het is nu mogelijk om de schijf da1 te vervangen nadat het systeem uitgeschakeld is. Zodra het systeem weer opgestart is, kan het volgende commando worden uitgevoerd om de schijf te vervangen:
# zpool replace storage da1
Nu kan de status opnieuw geïnspecteerd worden, dit keer zonder de -x
vlag, om de statusinformatie op te vragen:
# zpool status storage pool: storage state: ONLINE scrub: resilver completed with 0 errors on Sat Aug 30 19:44:11 2008 config: NAME STATE READ WRITE CKSUM storage ONLINE 0 0 0 raidz1 ONLINE 0 0 0 da0 ONLINE 0 0 0 da1 ONLINE 0 0 0 da2 ONLINE 0 0 0 errors: No known data errors
Zoals te zien in dit voorbeeld lijkt alles normaal te zijn.
Zoals eerder opgemerkt gebruikt ZFS checksums om de integriteit van opgeslagen gegevens te verifiëren. Ze worden automatisch ingeschakeld bij het creëeren van bestandssystemen en kunnen worden uitgeschakeld door middel van het volgende commando:
# zfs set checksum=off storage/home
Dit is echter geen verstandig idee, omdat checksums zeer weinig opslagruimte innemen en nuttiger zijn wanneer ze zijn ingeschakeld. Het lijkt daarnaast ook geen merkbare invloed op de prestaties te hebben wanneer ze zijn ingeschakeld. Wanneer ze aanstaan is het mogelijk om ZFS gegevensintegriteit te laten controleren door middel van checksum-verificatie. Dit proces staat bekend als “scrubbing”. Voer het volgende commando uit om de gegevensintegriteit van de storage-pool te controleren:
# zpool scrub storage
Dit proces kan, afhankelijk van de hoeveelheid opgeslagen gegevens, een aanzienlijke hoeveelheid tijd in beslag nemen. Het is daarnaast ook zeer I/O-intensief, zozeer dat slechts één van deze operaties tegelijkertijd uitgevoerd kan worden. Nadat de scrub is voltooid wordt de status bijgewerkt en kan deze worden bekeken door een statusaanvraag te doen:
# zpool status storage pool: storage state: ONLINE scrub: scrub completed with 0 errors on Sat Aug 30 19:57:37 2008 config: NAME STATE READ WRITE CKSUM storage ONLINE 0 0 0 raidz1 ONLINE 0 0 0 da0 ONLINE 0 0 0 da1 ONLINE 0 0 0 da2 ONLINE 0 0 0 errors: No known data errors
De voltooiingstijd is in dit voorbeeld duidelijk zichtbaar. Deze eigenschap helpt om gegevensintegriteit te garanderen gedurende een langere tijdsperiode.
Er zijn vele andere opties voor het Z-bestandssysteem, zie de handleidingpagina's zfs(8) en zpool(8).
Deze en andere documenten kunnen worden gedownload van ftp://ftp.FreeBSD.org/pub/FreeBSD/doc/.
Lees voor vragen over FreeBSD de documentatie alvorens contact te zoeken
<questions@FreeBSD.org>.
Vragen over deze documentatie kunnen per e-mail naar <doc@FreeBSD.org>.