11.12. One-Pointed Mind

Übersetzt von Daniel Seuffert.

Als ein Zen-Schüler liebe ich die Idee eines fokussierten Bewußtseins: Tu nur ein Ding zur gleichen Zeit, aber mache es richtig.

Das ist ziemlich genau die gleiche Idee, welche UNIX® richtig funktionieren lässt. Während eine typische Windows®-Applikation versucht alles Vorstellbare zu tun (und daher mit Fehler durchsetzt ist), versucht eine UNIX-Applikation nur eine Funktion zu erfüllen und das gut.

Der typische UNIX-Nutzer stellt sich sein eigenes System durch Shell-Skripte zusammen, die er selbst schreibt, und welche die Vorteile bestehender Applikationen dadurch kombinieren, indem sie die Ausgabe eines Programmes als Eingabe in ein anderes Programm durch eine Pipe übergeben.

Wenn Sie ihre eigene UNIX-Software schreiben, ist es generell eine gute Idee zu betrachten, welcher Teil der Problemlösung durch bestehende Programme bewerkstelligt werden kann. Man schreibt nur die Programme selbst, für die keine vorhandene Lösung existiert.

11.12.1. CSV

Ich will dieses Prinzip an einem besonderen Beispiel aus der realen Welt demonstrieren, mit dem ich kürzlich konfrontiert wurde:

Ich mußte jeweils das elfte Feld von jedem Datensatz aus einer Datenbank extrahieren, die ich von einer Webseite heruntergeladen hatte. Die Datenbank war eine CSV-Datei, d.h. eine Liste von Komma-getrennten Werten. Dies ist ein ziemlich gewöhnliches Format für den Code-Austausch zwischen Menschen, die eine unterschiedliche Datenbank-Software nutzen.

Die erste zeile der Datei enthält eine Liste der Felder durch Kommata getrennt. Der Rest der Datei enthält die einzelnen Datensätze mit durch Kommata getrennten Werten in jeder Zeile.

Ich versuchte awk unter Nutzung des Kommas als Trenner. Da aber einige Zeilen durch in Bindestriche gesetzte Kommata getrennt waren, extrahierte awk das falsche Feld aus diesen Zeilen.

Daher mußte ich meine eigene Software schreiben, um das elfte Feld aus der CSV-Datei auszulesen. Aber durch Anwendung der UNIX-Philosophie mußte ich nur einen einfachen Filter schreiben, das Folgende tat:

Streng genommen könnte ich sed benutzen, um die erste Zeile der Datei zu entfernen, aber das zu Bewerkstelligen war in meinem Programm sehr einfach, also entschloss ich mich dazu und reduzierte dadurch die Größe der Pipeline.

Unter Berücksichtigung aller Faktoren kostete mich das Schreiben dieses Progammes ca. 20 Minuten. Das Schreiben eines Programmes, welches jeweils das elfte Feld aus einer CSV-Datei extrahiert hätte wesentlich länger gedauert und ich hätte es nicht wiederverwenden können, um ein anderes Feld zu extrahieren aus irgendeiner anderen Datenbank.

Diesmal entschied ich mich dazu, etwas mehr Arbeit zu investieren, als man normalerweise für ein typisches Tutorial verwenden würde:

Hier ist ein Beispiel für seine Nutzung:

Usage: csv [-t<delim>] [-c<comma>] [-p] [-o <outfile>] [-i <infile>]

Alle Parameter sind optional und können in beliebiger Reihenfolge auftauchen.

Der -t-Parameter legt fest, was zu die Kommata zu ersetzen sind. Der tab ist die Vorgabe hierfür. Zum Beispiel wird -t; alle unquotierten Kommata mit Semikolon ersetzen.

Ich brauche die -c-Option nicht, aber sie könnte zukünftig nützlich sein. Sie ermöglicht mir festzulegen, daß ich einen anderen Buchstaben als das Kommata mit etwas anderem ersetzen möchte. Zum Beispiel wird der Parameter -c@ alle @-Zeichen ersetzen (nützlich, falls man eine Liste von EmAil-Adressen in Nutzername und Domain aufsplitten will).

Die -p-Option erhält die erste Zeile, d.h. die erste Zeile der Datei wird nicht gelöscht. Als Vorgabe löschen wir die erste Zeile, weil die CSV-Datei in der ersten Zeile keine Daten, sondern Feldbeschreibungen enthält.

Die Parameter -i- und -o-Optionen erlauben es mir, die Ausgabe- und Eingabedateien festzulegen. Vorgabe sind stdin und stdout, also ist es ein regulärer UNIX-Filter.

Ich habe sichergestellt, daß sowohl -i filename und -ifilename akzeptiert werden. Genauso habe ich dafür Sorge getragen, daß sowohl Eingabe- als auch Ausgabedateien festgelegt werden können.

Um das elfte Feld jeden Datensatzes zu erhalten kann ich nun folgendes eingeben:

% csv '-t;' data.csv | awk '-F;' '{print $11}'

Der Code speichert die Optionen (bis auf die Dateideskriptoren) in EDX: Das Kommata in DH, den neuen Feldtrenner in DL und das Flag für die -p-Option in dem höchsten Bit von EDX. Ein kurzer Abgleich des Zeichens wird uns also eine schnelle Entscheidung darüber erlauben, was zu tun ist.

Hier ist der Code:

;;;;;;; csv.asm ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; Convert a comma-separated file to a something-else separated file.
;
; Started:  31-May-2001
; Updated:   1-Jun-2001
;
; Copyright (c) 2001 G. Adam Stanislav
; All rights reserved.
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

%include    'system.inc'

%define BUFSIZE 2048

section .data
fd.in   dd  stdin
fd.out  dd  stdout
usg db  'Usage: csv [-t<delim>] [-c<comma>] [-p] [-o <outfile>] [-i <infile>]', 0Ah
usglen  equ $-usg
iemsg   db  "csv: Can't open input file", 0Ah
iemlen  equ $-iemsg
oemsg   db  "csv: Can't create output file", 0Ah
oemlen  equ $-oemsg

section .bss
ibuffer resb    BUFSIZE
obuffer resb    BUFSIZE

section .text
align 4
ierr:
    push    dword iemlen
    push    dword iemsg
    push    dword stderr
    sys.write
    push    dword 1     ; return failure
    sys.exit

align 4
oerr:
    push    dword oemlen
    push    dword oemsg
    push    dword stderr
    sys.write
    push    dword 2
    sys.exit

align 4
usage:
    push    dword usglen
    push    dword usg
    push    dword stderr
    sys.write
    push    dword 3
    sys.exit

align 4
global  _start
_start:
    add esp, byte 8 ; discard argc and argv[0]
    mov edx, (',' << 8) | 9

.arg:
    pop ecx
    or  ecx, ecx
    je  near .init      ; no more arguments

    ; ECX contains the pointer to an argument
    cmp byte [ecx], '-'
    jne usage

    inc ecx
    mov ax, [ecx]

.o:
    cmp al, 'o'
    jne .i

    ; Make sure we are not asked for the output file twice
    cmp dword [fd.out], stdout
    jne usage

    ; Find the path to output file - it is either at [ECX+1],
    ; i.e., -ofile --
    ; or in the next argument,
    ; i.e., -o file

    inc ecx
    or  ah, ah
    jne .openoutput
    pop ecx
    jecxz   usage

.openoutput:
    push    dword 420   ; file mode (644 octal)
    push    dword 0200h | 0400h | 01h
    ; O_CREAT | O_TRUNC | O_WRONLY
    push    ecx
    sys.open
    jc  near oerr

    add esp, byte 12
    mov [fd.out], eax
    jmp short .arg

.i:
    cmp al, 'i'
    jne .p

    ; Make sure we are not asked twice
    cmp dword [fd.in], stdin
    jne near usage

    ; Find the path to the input file
    inc ecx
    or  ah, ah
    jne .openinput
    pop ecx
    or  ecx, ecx
    je near usage

.openinput:
    push    dword 0     ; O_RDONLY
    push    ecx
    sys.open
    jc  near ierr       ; open failed

    add esp, byte 8
    mov [fd.in], eax
    jmp .arg

.p:
    cmp al, 'p'
    jne .t
    or  ah, ah
    jne near usage
    or  edx, 1 << 31
    jmp .arg

.t:
    cmp al, 't'     ; redefine output delimiter
    jne .c
    or  ah, ah
    je  near usage
    mov dl, ah
    jmp .arg

.c:
    cmp al, 'c'
    jne near usage
    or  ah, ah
    je  near usage
    mov dh, ah
    jmp .arg

align 4
.init:
    sub eax, eax
    sub ebx, ebx
    sub ecx, ecx
    mov edi, obuffer

    ; See if we are to preserve the first line
    or  edx, edx
    js  .loop

.firstline:
    ; get rid of the first line
    call    getchar
    cmp al, 0Ah
    jne .firstline

.loop:
    ; read a byte from stdin
    call    getchar

    ; is it a comma (or whatever the user asked for)?
    cmp al, dh
    jne .quote

    ; Replace the comma with a tab (or whatever the user wants)
    mov al, dl

.put:
    call    putchar
    jmp short .loop

.quote:
    cmp al, '"'
    jne .put

    ; Print everything until you get another quote or EOL. If it
    ; is a quote, skip it. If it is EOL, print it.
.qloop:
    call    getchar
    cmp al, '"'
    je  .loop

    cmp al, 0Ah
    je  .put

    call    putchar
    jmp short .qloop

align 4
getchar:
    or  ebx, ebx
    jne .fetch

    call    read

.fetch:
    lodsb
    dec ebx
    ret

read:
    jecxz   .read
    call    write

.read:
    push    dword BUFSIZE
    mov esi, ibuffer
    push    esi
    push    dword [fd.in]
    sys.read
    add esp, byte 12
    mov ebx, eax
    or  eax, eax
    je  .done
    sub eax, eax
    ret

align 4
.done:
    call    write       ; flush output buffer

    ; close files
    push    dword [fd.in]
    sys.close

    push    dword [fd.out]
    sys.close

    ; return success
    push    dword 0
    sys.exit

align 4
putchar:
    stosb
    inc ecx
    cmp ecx, BUFSIZE
    je  write
    ret

align 4
write:
    jecxz   .ret    ; nothing to write
    sub edi, ecx    ; start of buffer
    push    ecx
    push    edi
    push    dword [fd.out]
    sys.write
    add esp, byte 12
    sub eax, eax
    sub ecx, ecx    ; buffer is empty now
.ret:
    ret

Vieles daraus ist aus hex.asm entnommen worden. Aber es gibt einen wichtigen Unterschied: Ich rufe nicht länger write auf, wann immer ich eine Zeilenvorschub ausgebe. Nun kann der Code sogar interaktiv genutzt werden.

Ich habe eine bessere Lösung gefunden für das Interaktivitätsproblem seit ich mit dem Schreiben dieses Kapitels begonnen habe. Ich wollte sichergehen, daß jede Zeile einzeln ausgegeben werden kann, falls erforderlich. Aber schlussendlich gibt es keinen Bedarf jede Zeile einzeln auszugeben, falls nicht-interaktiv genutzt.

Die neue Lösung besteht darin, die Funktion write jedesmal aufzurufen, wenn ich den Eingabepuffer leer vorfinde. Auf diesem Wege liest das Programm im interaktiven Modus eine Zeile aus der Tastatur des Nutzers, verarbeitet sie und stellt fest, ob deren Eingabepuffer leer ist, dann leert es seine Ausgabe und liest die nächste Zeile.

11.12.1.1. Die dunkle Seite des Buffering

Diese Änderung verhindert einen mysteriösen Aufhänger in einem speziellen Fall. Ich bezeichne dies als die dunkle Seite des Buffering, hauptsächlich, weil es eine nicht offensichtliche Gefahr darstellt.

Es ist unwahrscheinlich, daß dies mit dem csv-Programm oben geschieht aber lassen Sie uns einen weiteren Filter betrachten: Nehmen wir an ihre Eingabe sind rohe Daten, die Farbwerte darstellen, wie z.B. die Intensität eines Pixel mit den Farben rot, grün und blau. Unsere Ausgabe wird der negative Wert unserer Eingabe sein.

Solch ein Filter würde sehr einfach zu schreiben sein. Der größte Teil davon würde so aussehen wie all die anderen Filter, die wir bsiher geschrieben haben, daher beziehe ich mich nur auf den Kern der Prozedur:

.loop:
    call    getchar
    not al      ; Create a negative
    call    putchar
    jmp short .loop

Da dieser Filter mit rohen Daten arbeitet ist es unwahrscheinlich, daß er interaktiv genutzt werden wird.

Aber das Programm könnte als Bildbearbeitssoftware tituliert werden. Wenn es nicht write vor jedem Aufruf von read durchführt, ist die Möglichkeit gegeben, das es sich aufhängt.

Dies könnte passieren:

  1. Der Bildeditor wird unseren Filter laden mittels der C-Funktion popen().

  2. Er wird die erste Zeile von Pixeln laden aus einer Bitmap oder Pixmap.

  3. Er wird die erste Zeile von Pixeln geschrieben in die Pipe, welche zur Variable fd.in unseres Filters führt.

  4. Unser Filter wird jeden Pixel auslesen von der Eingabe, in in seinen negativen Wert umkehren und ihn in den Ausgabepuffer schreiben.

  5. Unser Filter wird die Funktion getchar aufrufen, um das nächste Pixel abzurufen.

  6. Die Funktion getchar wird einen leeren Eingabepuffer vorfinden und daher die Funktion read aufrufen.

  7. read wird den Systemaufruf SYS_read starten.

  8. Der Kernel wird unseren Filter unterbrechen, bis der Bildeditor mehr Daten zur Pipe sendet.

  9. Der Bildedior wird aus der anderen Pipe lesen, welche verbunden ist mit fd.out unseres Filters, damit er die erste Zeile des auszugebenden Bildes setzen kann bevor er uns die zweite Zeile der Eingabe einliest.

  10. Der Kernel unterbricht den Bildeditor, bis er eine Ausgabe unseres Filters erhält, um ihn an den Bildeditor weiterzureichen.

An diesem Punkt wartet unser Filter auf den Bildeditor, daß er ihm mehr Daten zur Verarbeitung schicken möge. Gleichzeitig wartet der Bildeditor darauf, daß unser Filter das Resultat der Berechnung ersten Zeile sendet. Aber das Ergebnis sitzt in unserem Ausgabepuffer.

Der Filter und der Bildeditor werden fortfahren bis in die Ewigkeit aufeinander zu warten (oder zumindest bis sie per kill entsorgt werden). Unsere Software hat den eine Race Condition erreicht.

Das Problem tritt nicht auf, wenn unser Filter seinen Ausgabepuffer leert bevor er vom Kernel mehr Eingabedaten anfordert.

Wenn Sie Fragen zu FreeBSD haben, schicken Sie eine E-Mail an <de-bsd-questions@de.FreeBSD.org>.
Wenn Sie Fragen zu dieser Dokumentation haben, schicken Sie eine E-Mail an <de-bsd-translators@de.FreeBSD.org>.